

The Jupyter Notebook Format

Jupyter (né IPython) notebook files are simple JSON documents,
containing text, source code, rich media output, and metadata.
Each segment of the document is stored in a cell.

Contents:

	The Notebook file format
	Top-level structure

	Cell Types

	Backward-compatible changes

	Metadata

	Python API for working with notebook files
	Reading and writing

	NotebookNode objects

	Other functions

	Constructing notebooks programmatically

	Notebook signatures

	Changes in nbformat
	4.3

	4.2

	4.1

	4.0

Indices and tables

	Index

	Module Index

	Search Page

The Notebook file format

Some general points about the notebook format:

Note

All metadata fields are optional.
While the type and values of some metadata are defined,
no metadata values are required to be defined.

Top-level structure

At the highest level, a Jupyter notebook is a dictionary with a few keys:

	metadata (dict)

	nbformat (int)

	nbformat_minor (int)

	cells (list)

{
 "metadata" : {
 "kernel_info": {
 # if kernel_info is defined, its name field is required.
 "name" : "the name of the kernel"
 },
 "language_info": {
 # if language_info is defined, its name field is required.
 "name" : "the programming language of the kernel",
 "version": "the version of the language",
 "codemirror_mode": "The name of the codemirror mode to use [optional]"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 0,
 "cells" : [
 # list of cell dictionaries, see below
],
}

Some fields, such as code input and text output, are characteristically multi-line strings.
When these fields are written to disk, they may be written as a list of strings,
which should be joined with '' when reading back into memory.
In programmatic APIs for working with notebooks (Python, Javascript),
these are always re-joined into the original multi-line string.
If you intend to work with notebook files directly,
you must allow multi-line string fields to be either a string or list of strings.

Cell Types

There are a few basic cell types for encapsulating code and text.
All cells have the following basic structure:

{
 "cell_type" : "name",
 "metadata" : {},
 "source" : "single string or [list, of, strings]",
}

Note

On disk, multi-line strings MAY be split into lists of strings.
When read with the nbformat Python API,
these multi-line strings will always be a single string.

Markdown cells

Markdown cells are used for body-text, and contain markdown,
as defined in GitHub-flavored markdown [https://help.github.com/articles/github-flavored-markdown], and implemented in marked [https://github.com/chjj/marked].

{
 "cell_type" : "markdown",
 "metadata" : {},
 "source" : "[multi-line *markdown*]",
}

Changed in version nbformat: 4.0

Heading cells have been removed, in favor of simple headings in markdown.

Code cells

Code cells are the primary content of Jupyter notebooks.
They contain source code in the language of the document’s associated kernel,
and a list of outputs associated with executing that code.
They also have an execution_count, which must be an integer or null.

{
 "cell_type" : "code",
 "execution_count": 1, # integer or null
 "metadata" : {
 "collapsed" : True, # whether the output of the cell is collapsed
 "autoscroll": False, # any of true, false or "auto"
 },
 "source" : "[some multi-line code]",
 "outputs": [{
 # list of output dicts (described below)
 "output_type": "stream",
 ...
 }],
}

Changed in version nbformat: 4.0

input was renamed to source, for consistency among cell types.

Changed in version nbformat: 4.0

prompt_number renamed to execution_count

Code cell outputs

A code cell can have a variety of outputs (stream data or rich mime-type output).
These correspond to messages [https://jupyter-client.readthedocs.io/en/stable/messaging.html#messaging] produced as a result of executing the cell.

All outputs have an output_type field,
which is a string defining what type of output it is.

stream output

{
 "output_type" : "stream",
 "name" : "stdout", # or stderr
 "text" : "[multiline stream text]",
}

Changed in version nbformat: 4.0

The stream key was changed to name to match
the stream message.

display_data

Rich display outputs, as created by display_data messages,
contain data keyed by mime-type. This is often called a mime-bundle,
and shows up in various locations in the notebook format and message spec.
The metadata of these messages may be keyed by mime-type as well.

{
 "output_type" : "display_data",
 "data" : {
 "text/plain" : "[multiline text data]",
 "image/png": "[base64-encoded-multiline-png-data]",
 "application/json": {
 # JSON data is included as-is
 "json": "data",
 },
 },
 "metadata" : {
 "image/png": {
 "width": 640,
 "height": 480,
 },
 },
}

Changed in version nbformat: 4.0

application/json output is no longer double-serialized into a string.

Changed in version nbformat: 4.0

mime-types are used for keys, instead of a combination of short names (text)
and mime-types, and are stored in a data key, rather than the top-level.
i.e. output.data['image/png'] instead of output.png.

execute_result

Results of executing a cell (as created by displayhook in Python)
are stored in execute_result outputs.
execute_result outputs are identical to display_data,
adding only a execution_count field, which must be an integer.

{
 "output_type" : "execute_result",
 "execution_count": 42,
 "data" : {
 "text/plain" : "[multiline text data]",
 "image/png": "[base64-encoded-multiline-png-data]",
 "application/json": {
 # JSON data is included as-is
 "json": "data",
 },
 },
 "metadata" : {
 "image/png": {
 "width": 640,
 "height": 480,
 },
 },
}

Changed in version nbformat: 4.0

pyout renamed to execute_result

Changed in version nbformat: 4.0

prompt_number renamed to execution_count

error

Failed execution may show a traceback

{
 'output_type': 'error',
 'ename' : str, # Exception name, as a string
 'evalue' : str, # Exception value, as a string

 # The traceback will contain a list of frames,
 # represented each as a string.
 'traceback' : list,
}

Changed in version nbformat: 4.0

pyerr renamed to error

Raw NBConvert cells

A raw cell is defined as content that should be included unmodified in nbconvert [https://nbconvert.readthedocs.org] output.
For example, this cell could include raw LaTeX for nbconvert to pdf via latex,
or restructured text for use in Sphinx documentation.

The notebook authoring environment does not render raw cells.

The only logic in a raw cell is the format metadata field.
If defined, it specifies which nbconvert output format is the intended target
for the raw cell. When outputting to any other format,
the raw cell’s contents will be excluded.
In the default case when this value is undefined,
a raw cell’s contents will be included in any nbconvert output,
regardless of format.

{
 "cell_type" : "raw",
 "metadata" : {
 # the mime-type of the target nbconvert format.
 # nbconvert to formats other than this will exclude this cell.
 "format" : "mime/type"
 },
 "source" : "[some nbformat output text]"
}

Cell attachments

New in version 4.1.

Markdown and raw cells can have a number of attachments, typically inline
images that can be referenced in the markdown content of a cell. The attachments
dictionary of a cell contains a set of mime-bundles (see display_data [https://jupyter-client.readthedocs.io/en/stable/messaging.html#id4])
keyed by filename that represents the files attached to the cell.

Note

The attachments dictionary is an optional field and can be undefined or empty if the cell does not have any attachments.

{
 "cell_type" : "markdown",
 "metadata" : {},
 "source" : ["Here is an *inline* image ![inline image](attachment:test.png)"],
 "attachments" : {
 "test.png": {
 "image/png" : "base64-encoded-png-data"
 }
 }
}

Backward-compatible changes

The notebook format is an evolving format. When backward-compatible changes are made,
the notebook format minor version is incremented. When backward-incompatible changes are made,
the major version is incremented.

As of nbformat 4.x, backward-compatible changes include:

	new fields in any dictionary (notebook, cell, output, metadata, etc.)

	new cell types

	new output types

New cell or output types will not be rendered in versions that do not recognize them,
but they will be preserved.

Metadata

Metadata is a place that you can put arbitrary JSONable information about
your notebook, cell, or output. Because it is a shared namespace,
any custom metadata should use a sufficiently unique namespace,
such as metadata.kaylees_md.foo = “bar”.

Metadata fields officially defined for Jupyter notebooks are listed here:

Notebook metadata

The following metadata keys are defined at the notebook level:

	Key

	Value

	Interpretation

	kernelspec

	dict

	A kernel specification [https://jupyter-client.readthedocs.io/en/stable/kernels.html#kernelspecs]

	authors

	list of dicts

	A list of authors of the document

A notebook’s authors is a list of dictionaries containing information about each author of the notebook.
Currently, only the name is required.
Additional fields may be added.

nb.metadata.authors = [
 {
 'name': 'Fernando Perez',
 },
 {
 'name': 'Brian Granger',
 },
]

Cell metadata

The following metadata keys are defined at the cell level:

	Key

	Value

	Interpretation

	collapsed

	bool

	Whether the cell’s output container should be collapsed

	autoscroll

	bool or ‘auto’

	Whether the cell’s output is scrolled, unscrolled, or autoscrolled

	deletable

	bool

	If False, prevent deletion of the cell

	format

	‘mime/type’

	The mime-type of a Raw NBConvert Cell

	name

	str

	A name for the cell. Should be unique

	tags

	list of str

	A list of string tags on the cell. Commas are not allowed in a tag

Output metadata

The following metadata keys are defined for code cell outputs:

	Key

	Value

	Interpretation

	isolated

	bool

	Whether the output should be isolated into an IFrame

Python API for working with notebook files

Reading and writing

	
nbformat.read(fp, as_version, **kwargs)

	Read a notebook from a file as a NotebookNode of the given version.

The string can contain a notebook of any version.
The notebook will be returned as_version, converting, if necessary.

Notebook format errors will be logged.

	Parameters

	
	fp (file or str [https://docs.python.org/3/library/stdtypes.html#str]) – A file-like object with a read method that returns unicode (use
io.open() in Python 2), or a path to a file.

	as_version (int [https://docs.python.org/3/library/functions.html#int]) – The version of the notebook format to return.
The notebook will be converted, if necessary.
Pass nbformat.NO_CONVERT to prevent conversion.

	Returns

	nb – The notebook that was read.

	Return type

	NotebookNode

	
nbformat.reads(s, as_version, **kwargs)

	Read a notebook from a string and return the NotebookNode object as the given version.

The string can contain a notebook of any version.
The notebook will be returned as_version, converting, if necessary.

Notebook format errors will be logged.

	Parameters

	
	s (unicode) – The raw unicode string to read the notebook from.

	as_version (int [https://docs.python.org/3/library/functions.html#int]) – The version of the notebook format to return.
The notebook will be converted, if necessary.
Pass nbformat.NO_CONVERT to prevent conversion.

	Returns

	nb – The notebook that was read.

	Return type

	NotebookNode

The reading functions require you to pass the as_version parameter. Your
code should specify the notebook format that it knows how to work with: for
instance, if your code handles version 4 notebooks:

nb = nbformat.read('path/to/notebook.ipynb', as_version=4)

This will automatically upgrade or downgrade notebooks in other versions of
the notebook format to the structure your code knows about.

	
nbformat.write(nb, fp, version=nbformat.NO_CONVERT, **kwargs)

	Write a notebook to a file in a given nbformat version.

The file-like object must accept unicode input.

	Parameters

	
	nb (NotebookNode) – The notebook to write.

	fp (file or str [https://docs.python.org/3/library/stdtypes.html#str]) – Any file-like object with a write method that accepts unicode, or
a path to write a file.

	version (int [https://docs.python.org/3/library/functions.html#int], optional) – The nbformat version to write.
If nb is not this version, it will be converted.
If unspecified, or specified as nbformat.NO_CONVERT,
the notebook’s own version will be used and no conversion performed.

	
nbformat.writes(nb, version=nbformat.NO_CONVERT, **kwargs)

	Write a notebook to a string in a given format in the given nbformat version.

Any notebook format errors will be logged.

	Parameters

	
	nb (NotebookNode) – The notebook to write.

	version (int [https://docs.python.org/3/library/functions.html#int], optional) – The nbformat version to write.
If unspecified, or specified as nbformat.NO_CONVERT,
the notebook’s own version will be used and no conversion performed.

	Returns

	s – The notebook as a JSON string.

	Return type

	unicode

	
nbformat.NO_CONVERT

	This special value can be passed to the reading and writing functions, to
indicate that the notebook should be loaded/saved in the format it’s supplied.

	
nbformat.current_nbformat

	
nbformat.current_nbformat_minor

	These integers represent the current notebook format version that the
nbformat module knows about.

NotebookNode objects

The functions in this module work with NotebookNode objects, which are
like dictionaries, but allow attribute access (nb.cells). The structure of
these objects matches the notebook format described in The Notebook file format.

	
class nbformat.NotebookNode(*args, **kw)

	A dict-like node with attribute-access

	
nbformat.from_dict(d)

	Convert dict to dict-like NotebookNode

Recursively converts any dict in the container to a NotebookNode.
This does not check that the contents of the dictionary make a valid
notebook or part of a notebook.

Other functions

	
nbformat.convert(nb, to_version)

	Convert a notebook node object to a specific version. Assumes that
all the versions starting from 1 to the latest major X are implemented.
In other words, there should never be a case where v1 v2 v3 v5 exist without
a v4. Also assumes that all conversions can be made in one step increments
between major versions and ignores minor revisions.

	Parameters

	
	nb (NotebookNode) –

	to_version (int [https://docs.python.org/3/library/functions.html#int]) – Major revision to convert the notebook to. Can either be an upgrade or
a downgrade.

	
nbformat.validate(nbjson, ref=None, version=None, version_minor=None)

	Checks whether the given notebook JSON conforms to the current
notebook format schema.

Raises ValidationError if not valid.

	
class nbformat.ValidationError(message, validator=<unset>, path=(), cause=None, context=(), validator_value=<unset>, instance=<unset>, schema=<unset>, schema_path=(), parent=None)

	

Constructing notebooks programmatically

These functions return NotebookNode objects with the necessary fields.

	
nbformat.v4.new_notebook(**kwargs)

	Create a new notebook

	
nbformat.v4.new_code_cell(source='', **kwargs)

	Create a new code cell

	
nbformat.v4.new_markdown_cell(source='', **kwargs)

	Create a new markdown cell

	
nbformat.v4.new_raw_cell(source='', **kwargs)

	Create a new raw cell

	
nbformat.v4.new_output(output_type, data=None, **kwargs)

	Create a new output, to go in the cell.outputs list of a code cell.

	
nbformat.v4.output_from_msg(msg)

	Create a NotebookNode for an output from a kernel’s IOPub message.

	Returns

	NotebookNode

	Return type

	the output as a notebook node.

	Raises

	ValueError: if the message is not an output message.

Notebook signatures

This machinery is used by the notebook web application to record which notebooks
are trusted, and may show dynamic output as soon as they’re loaded. See
Security in notebook documents [https://jupyter-notebook.readthedocs.io/en/stable/security.html#notebook-security] for more information.

	
class nbformat.sign.NotebookNotary(**kwargs)

	A class for computing and verifying notebook signatures.

	
sign(nb)

	Sign a notebook, indicating that its output is trusted on this machine

Stores hash algorithm and hmac digest in a local database of trusted notebooks.

	
unsign(nb)

	Ensure that a notebook is untrusted

by removing its signature from the trusted database, if present.

	
check_signature(nb)

	Check a notebook’s stored signature

If a signature is stored in the notebook’s metadata,
a new signature is computed and compared with the stored value.

Returns True if the signature is found and matches, False otherwise.

The following conditions must all be met for a notebook to be trusted:
- a signature is stored in the form ‘scheme:hexdigest’
- the stored scheme matches the requested scheme
- the requested scheme is available from hashlib
- the computed hash from notebook_signature matches the stored hash

	
mark_cells(nb, trusted)

	Mark cells as trusted if the notebook’s signature can be verified

Sets cell.metadata.trusted = True | False on all code cells,
depending on the trusted parameter. This will typically be the return
value from self.check_signature(nb).

This function is the inverse of check_cells

	
check_cells(nb)

	Return whether all code cells are trusted.

A cell is trusted if the ‘trusted’ field in its metadata is truthy, or
if it has no potentially unsafe outputs.
If there are no code cells, return True.

This function is the inverse of mark_cells.

Signature storage

Signatures are stored using a pluggable SignatureStore subclass. To
implement your own, override the methods below and configure
NotebookNotary.store_factory.

	
class nbformat.sign.SignatureStore

	Base class for a signature store.

	
store_signature(digest, algorithm)

	Implement in subclass to store a signature.

Should not raise if the signature is already stored.

	
remove_signature(digest, algorithm)

	Implement in subclass to delete a signature.

Should not raise if the signature is not stored.

	
check_signature(digest, algorithm)

	Implement in subclass to check if a signature is known.

Return True for a known signature, False for unknown.

	
close()

	Close any open connections this store may use.

If the store maintains any open connections (e.g. to a database),
they should be closed.

By default, NotebookNotary will use an SQLite based store if SQLite
bindings are available, and an in-memory store otherwise.

	
class nbformat.sign.SQLiteSignatureStore(db_file, **kwargs)

	Store signatures in an SQLite database.

	
class nbformat.sign.MemorySignatureStore

	Non-persistent storage of signatures in memory.

Changes in nbformat

4.3

4.3 on GitHub [https://github.com/jupyter/nbformat/milestone/7]

	A new pluggable SignatureStore class allows specifying different ways to
record the signatures of trusted notebooks. The default is still an SQLite
database. See Signature storage for more information.

	nbformat.read() and nbformat.write() accept file paths as bytes
as well as unicode.

	Fix for calling nbformat.validate() on an empty dictionary.

	Fix for running the tests where the locale makes ASCII the default encoding.

4.2

4.2.0

4.2 on GitHub [https://github.com/jupyter/nbformat/milestones/4.2]

	Update nbformat spec version to 4.2, allowing JSON outputs to have any JSONable type, not just object,
and mime-types of the form application/anything+json.

	Define basics of authors in notebook metadata.
nb.metadata.authors shall be a list of objects with the property name, a string of each author’s full name.

	Update use of traitlets API to require traitlets 4.1.

	Support trusting notebooks on stdin with cat notebook | jupyter trust

4.1

4.1.0

4.1 on GitHub [https://github.com/jupyter/nbformat/milestones/4.1]

	Update nbformat spec version to 4.1, adding support for attachments on markdown and raw cells.

	Catch errors opening trust database, falling back on :memory: if the database cannot be opened.

4.0

4.0 on GitHub [https://github.com/jupyter/nbformat/milestones/4.0]

The first release of nbformat as its own package.

 Python Module Index

 n

 		 	

 		
 n	

 	[image: -]
 	
 nbformat	

 	
 	
 nbformat.sign	

 	
 	
 nbformat.v4	

Index

 C
 | F
 | M
 | N
 | O
 | R
 | S
 | U
 | V
 | W

C

 	
 	check_cells() (nbformat.sign.NotebookNotary method)

 	check_signature() (nbformat.sign.NotebookNotary method)

 	(nbformat.sign.SignatureStore method)

 	
 	close() (nbformat.sign.SignatureStore method)

 	convert() (in module nbformat)

 	current_nbformat (in module nbformat)

 	current_nbformat_minor (in module nbformat)

F

 	
 	from_dict() (in module nbformat)

M

 	
 	mark_cells() (nbformat.sign.NotebookNotary method)

 	
 	MemorySignatureStore (class in nbformat.sign)

N

 	
 	nbformat (module)

 	nbformat.sign (module)

 	nbformat.v4 (module)

 	new_code_cell() (in module nbformat.v4)

 	new_markdown_cell() (in module nbformat.v4)

 	
 	new_notebook() (in module nbformat.v4)

 	new_output() (in module nbformat.v4)

 	new_raw_cell() (in module nbformat.v4)

 	NO_CONVERT (in module nbformat)

 	NotebookNode (class in nbformat)

 	NotebookNotary (class in nbformat.sign)

O

 	
 	output_from_msg() (in module nbformat.v4)

R

 	
 	read() (in module nbformat)

 	
 	reads() (in module nbformat)

 	remove_signature() (nbformat.sign.SignatureStore method)

S

 	
 	sign() (nbformat.sign.NotebookNotary method)

 	SignatureStore (class in nbformat.sign)

 	
 	SQLiteSignatureStore (class in nbformat.sign)

 	store_signature() (nbformat.sign.SignatureStore method)

U

 	
 	unsign() (nbformat.sign.NotebookNotary method)

V

 	
 	validate() (in module nbformat)

 	
 	ValidationError (class in nbformat)

W

 	
 	write() (in module nbformat)

 	
 	writes() (in module nbformat)

 nav.xhtml

 Table of Contents

 		
 The Jupyter Notebook Format

 		
 The Notebook file format

 		
 Top-level structure

 		
 Cell Types

 		
 Markdown cells

 		
 Code cells

 		
 Code cell outputs

 		
 Raw NBConvert cells

 		
 Cell attachments

 		
 Backward-compatible changes

 		
 Metadata

 		
 Notebook metadata

 		
 Cell metadata

 		
 Output metadata

 		
 Python API for working with notebook files

 		
 Reading and writing

 		
 NotebookNode objects

 		
 Other functions

 		
 Constructing notebooks programmatically

 		
 Notebook signatures

 		
 Signature storage

 		
 Changes in nbformat

 		
 4.3

 		
 4.2

 		
 4.2.0

 		
 4.1

 		
 4.1.0

 		
 4.0

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

